7,058 research outputs found

    Flavor SU(3) analysis of charmless B->PP decays

    Full text link
    We perform a global fits to charmless BPPB \to PP decays which independently constrain the (ρˉ,ηˉ)(\bar\rho,\bar\eta) vertex of the unitarity triangle. The fitted amplitudes and phase are used to predict the branching ratios and CP asymmetries of all decay modes, including those of the BsB_s system. Different schemes of SU(3) breaking in decay amplitude sizes are analyzed. The possibility of having a new physics contribution to KπK \pi decays is also discussed.Comment: 3 pages, 2 figs. Talk given at EPS-HEP07 To appear in the proceedings, Reference adde

    Electrochemical Quartz Crystal Microbalance Study of Corrosion of Phases in AA2024

    Get PDF
    The electrochemical quartz crystal microbalance (EQCM) was used to directly measure the dissolution rate at cathodic potentials, and thus the cathodic corrosion rate, of thin-film analogs of phases in AA2024. Thin films of pure Al, Al-4% Cu, and Al2Cu were studied in 0.1 M NaCl containing 0, 10^-4, or 10^-2 M Cr2O7 . A range of cathodic potentials was studied for each material. The true cathodic current density was calculated from the difference of the net current density and the dissolution rate, which was determined by the EQCM. For pure Al and Al-4Cu, the cathodic corrosion rate was large relative to the net current density, so the true cathodic current density was considerably larger than the measured net current density. The cathodic current density was almost identical to the net current density for Al2Cu because the dissolution rate was very small compared to the cathodic reaction rate. Various potentials in the limiting oxygen reduction reaction region were examined, but the effect of the applied potential was small. The presence of dichromate in solution decreased both the cathodic corrosion rate and the cathodic current density on these thin-film analogs. In particular, it decreased more effectively the cathodic reaction rate on Al2Cu, which can support faster cathodic reaction rates.This work was supported by the United States Air Force Office of Scientific Research Grant no. F49620-96-1-0479 under the guidance of Dr. Paul Trulove

    Persistence of singlet fluctuations in the coupled spin tetrahedra system Cu2Te2O5Br2 revealed by high-field magnetization and 79Br NQR - 125Te NMR

    Full text link
    We present high-field magnetization and 79^{79}Br nuclear quadrupole resonance (NQR) and 125^{125}Te nuclear magnetic resonance (NMR) studies in the weakly coupled Cu2+^{2+} (S=1/2S=1/2) tetrahedral system Cu2_2Te2_2O5_5Br2_2. The field-induced level crossing effects were observed by the magnetization measurements in a long-ranged magnetically ordered state which was confirmed by a strong divergence of the spin-lattice relaxation rate 1/T1 at T0=13.5 K. In the paramagnetic state, 1/T1 reveals an effective singlet-triplet spin gap much larger than that observed by static bulk measurements. Our results imply that the inter- and the intra-tetrahedral interactions compete, but at the same time they cooperate strengthening effectively the local intratetrahedral exchange couplings. We discuss that the unusual feature originates from the frustrated intertetrahedral interactions.Comment: 5 pages, 4 figures, accepted in Phys. Rev. B as a Rapid Communication

    Evolution of direct reciprocity in group-structured populations

    Get PDF
    People tend to have their social interactions with members of their owncommunity. Such group-structured interactions can have a profound impact on thebehaviors that evolve. Group structure affects the way people cooperate, andhow they reciprocate each other's cooperative actions. Past work has shown thatpopulation structure and reciprocity can both promote the evolution ofcooperation. Yet the impact of these mechanisms has been typically studied inisolation. In this work, we study how the two mechanisms interact. Using agame-theoretic model, we explore how people engage in reciprocal cooperation ingroup-structured populations, compared to well-mixed populations of equal size.To derive analytical results, we focus on two scenarios. In the first scenario,we assume a complete separation of time scales. Mutations are rare compared tobetween-group comparisons, which themselves are rare compared to within-groupcomparisons. In the second scenario, there is a partial separation of timescales, where mutations and between-group comparisons occur at a comparablerate. In both scenarios, we find that the effect of population structuredepends on the benefit of cooperation. When this benefit is small,group-structured populations are more cooperative. But when the benefit islarge, well-mixed populations result in more cooperation. Overall, our resultsreveal how group structure can sometimes enhance and sometimes suppress theevolution of cooperation.<br

    |V_ub| and |V_cb|, Charm Counting and Lifetime Differences in Inclusive Bottom Hadron Decays

    Full text link
    Inclusive bottom hadron decays are analyzed based on the heavy quark effective field theory (HQEFT). Special attentions in this paper are paid to the b\to u transitions and nonspectator effects. As a consequence, the CKM quark mixing matrix elements |V_ub| and |V_cb| are reliably extracted from the inclusive semileptonic decays B\to X_u e \nu and B\to X_c e \nu. Various observables, such as the semileptonic branch ratio B_SL, the lifetime differences among B^-, B^0, B_s and \Lambda_b hadrons, the charm counting n_c, are predicted and found to be consistent with the present experimental data.Comment: 20 pages, Revtex, 4 figures and 2 table

    Dyon condensation in topological Mott insulators

    Full text link
    We consider quantum phase transitions out of topological Mott insulators in which the ground state of the fractionalized excitations (fermionic spinons) is topologically non-trivial. The spinons in topological Mott insulators are coupled to an emergent compact U(1) gauge field with a so-called "axion" term. We study the confinement transitions from the topological Mott insulator to broken symmetry phases, which may occur via the condensation of dyons. Dyons carry both "electric" and "magnetic" charges, and arise naturally in this system because the monopoles of the emergent U(1) gauge theory acquires gauge charge due to the axion term. It is shown that the dyon condensate, in general, induces simultaneous current and bond orders. To demonstrate this, we study the confined phase of the topological Mott insulator on the cubic lattice. When the magnetic transition is driven by dyon condensation, we identify the bond order as valence bond solid order and the current order as scalar spin chirality order. Hence, the confined phase of the topological Mott insulator is an exotic phase where the scalar spin chirality and the valence bond order coexist and appear via a single transition. We discuss implications of our results for generic models of topological Mott insulators.Comment: 14 pages, accepted to the New Journal of Physic

    MACS: Multi-agent COTR system for Defense Contracting

    Get PDF
    The field of intelligent multi-agent systems has expanded rapidly in the recent past. Multi-agent architectures and systems are being investigated and continue to develop. To date, little has been accomplished in applying multi-agent systems to the defense acquisition domain. This paper describes the design, development, and related considerations of a multi-agent system in the area of procurement and contracting for the defense acquisition community
    corecore